本文目录一览:
- 1、协方差分析的意义
- 2、协方差矩阵的意义
- 3、协方差矩阵差异具有统计学意义是什么意思
- 4、相关系数和协方差所表示的意义有什么区别
- 5、序列相关中的协方差有什么用,有什么意义?
- 6、样本协方差特征值的意义
协方差分析的意义
当研究者知道有些协变量会影响因变量,却不能够控制和不感兴趣时(当研究学习时间对学习绩效的影响,学生原来的学习基础、智力学习兴趣就是协变量),可以在实验处理前予以观测,然后在统计时运用协方差分析来处理。
将协变量对因变量的影响从自变量中分离出去,可以进一步提高实验精确度和统计检验灵敏度。
方差是用来度量单个变量 “自身变异”大小的总体参数,方差越大,该变量的变异越大;
协方差是用来度量两个变量之间 “协同变异”大小的总体参数,即二个变量相互影响大小的参数,协方差的绝对值越大,两个变量相互影响越大。
对于仅涉及单个变量的试验资料,由于其总变异仅为“自身变异”(如单因素完全随机设计试验资料,“自身变异”是指由处理和随机误差所引起的变异),因而可以用方差分析法进行分析;
对于涉及两个变量的试验资料,由于每个变量的总变异既包含了“自身变异”又包含了“协同变异”(是指由另一个变量所引起的变异),须采用协方差分析法来进行分析,才能得到正确结论。
协方差矩阵的意义
协方差矩阵的意义是每一个元素是表示的随机向量 X 的不同分量之间的协方差,而不是不同样本之间的协方 差,如元素 Cij 就是反映的随机变量 Xi, Xj 的协方差。
协方差矩阵是统计学与概率论概念。外文名为covariance matrix。
统计学是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。统计学用到了大量的数学及其它学科的专业知识,其应用范围几乎覆盖了社会科学和自然科学的各个领域。
统计学的英文statistics最早源于现代拉丁文Statisticum Collegium(国会)、意大利文Statista(国民或政治家)以及德文Statistik,最早是由Gottfried Achenwall于1749年使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。十九世纪,统计学在广泛的数据以及资料中探究其意义,并且由John Sinclair引进到英语世界。
协方差矩阵差异具有统计学意义是什么意思
当前大家对于协方差都是颇为感兴趣的,大家都想要了解一下协方差,那么小美也是在网络上收集了一些关于协方差的一些信息来分享给大家,希望能够帮到大家哦。
1、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。
2、而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
3、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
4、如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
5、如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
相关系数和协方差所表示的意义有什么区别
相关系数和协方差所表示的意义区别:含义不同,作用不同。
一、含义不同:
协方差是一个用于测量投资组合中某一具体投资项目相对于另一投资项目风险的统计指标,通俗点就是投资组合中两个项目间收益率的相关程度,正数说明两个项目一个收益率上升,另一个也上升,收益率呈同方向变化。如果是负数,则一个上升另一个下降,表明收益率是反方向变化。
二、作用不同:
协方差的绝对值越大,表示这两种资产收益率关系越密切;绝对值越小表明这两种资产收益率的关系越疏远。
由于协方差比较难理解,所以将协方差除以两个投资方案投资收益率的标准差之积,得出一个与协方差具有相同性质却没有量化的数。这个数就是相关系数。计算公式为相关系数=协方差/两个项目标准差之积。
表示
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
以上内容参考:百度百科-相关系数
序列相关中的协方差有什么用,有什么意义?
在概率论和统计学中,协方差用于衡量两个变量的总体误差.而方差是协方差的一种特殊情况,即当两个变量是相同的情况.
协方差表示的是两个变量总体的误差,这与只表示一个变量误差的方差不同.
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值.
如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值.
样本协方差特征值的意义
对于一个样本集合S,如果每个样本是一个n维空间中的一个列向量,则使用协方差矩阵描述样本之间的变化程度,
协方差矩阵的定义式:
其中,Xi和Xj分别表示第i个维度上的样本和第j个维度上的样本。
协方差矩阵C是一个n*n维的方阵,协方差矩阵的元素值代表了样本集在对应方向上的方差,例如:C的对角线上的元素C(i,i)代表了样本集在第i个维度上的方差,也即代表样本集在第i个维度上的能量。C(i,j)代表了样本集在第i个维度和第j个维度上的样本分量之间的协方差,可以理解为样本集在第i维投影方向和第j维投影方向之间的斜线方向上的方差,或者能量。所以,协方差矩阵集中表示了样本集在原n维空间中各个方向上的能量分布。