本文目录一览:
什么是正定矩阵?
正定矩阵
设M是n阶实系数对称矩阵, 如果对任何非零向量 X=(x_1,...x_n) 都有 X′MX0,就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型, 即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。
正定矩阵的定义?
设M是n阶方阵,如果对任何非零向量z,都有zTMz
0,其中zT
表示z的转置,就称M正定矩阵。
例如:B为n阶矩阵,E为单位矩阵,a为正实数。aE+B在a充分大时,aE+B为正定矩阵。(B必须为对称阵)
一个n阶的实对称矩阵M是正定的当且仅当对于所有的非零实系数向量z,都有zTMz
0。其中zT表示z的转置。
什么是正定矩阵
判断一个矩阵是否为正定矩阵有两种方法:
1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。半正定矩阵的特点:
1、半正定矩阵的行列式是非负的;两个半正定矩阵的和是半正定的;非负实数与半正定矩阵的数乘矩阵是半正定的。
2、设A是实对称矩阵。如果对任意的实非零列向量x有xTAx≥0x有xTAx≥0,就称A为半正定矩阵。