本文目录一览:
真子集与子集的区别是什么?
包含和真包含是集合与集合之间的关系,也叫子集和真子集关系。
真子集和子集的区别:
子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;
真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等。
拓展资料:
如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集。A是B的真子集
一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset)。
记作: A⊆B(或B⊇A)
读作:“A包含于B”(“B包含A”)
而真子集是对于子集来说的
真子集定义:如果集合A⊆B,但存在元素X∈B,且元素X不属于集合A,我们称集合A是集合B的真子集。
也就是说如果集合A的所有元素同时都是集合 B 的元素,则称 A 是 B 的子集,
若 B 中有一个元素,而A 中没有,且A 是 B 的子集,则称 A 是 B 的真子集,
什么叫子集和真子集(要明确的概念)
子集的概念:对于两个非空集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说A⊆B(读作A包含于B),或B⊇A(读作B包含A),称集合A是集合B的子集。
规定:空集是任何集合的子集,是任何非空集合的真子集。
空集的子集是它本身。
如果A⊆B,而集合B中至少有一个元素不属于集合A,则称集合A是集合B的真子集。任何一个集合是它本身的子集。
扩展资料
举例
1、所有亚洲国家组成的集合是地球上所有国家组成的集合的真子集;所有自然数的集合是所有整数的集合的真子集(即N⊊Z);{1,3}⊊{1,2,3,4},{1,2,3}⊊{1,2,3,4};∅⊊{∅}。但不能说{1,2,3}⊊{1,2,3}。
2、设全集I为{1,2,3},则它的子集可以是{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}、∅;而它的真子集只能为{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、∅。它的非空真子集只能为{1}、{2}、{3}、{1,2}、{1,3}、{2,3}。
不含任何元素的集合称为空集,空集是任何集合的子集,且空集是任何非空子集的真子集。
任何集合都是自己的子集,非真子集就是原集合
空集是任何集合的子集,非空真子集是除去空集和原集合两个集合外的子集。
参考资料:百度百科——子集 百度百科——真子集
子集和真子集的区别
真子集和子集有区别:
1.含义不同:真子集是指如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,则集合A是集合B的真子集。
子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
2.性质不同:子集
(1)子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
(2)对于空集,我们规定A,即空集是任何集合的子集。
真子集;对于集合A与B,x∈A有x∈B,则AB。可知任一集合A是自身的子集,空集是任一集合的子集。