本文目录一览:
- 1、什么是比?什么是比例?比和比例有什么关联和区别?
- 2、比例是什么
- 3、比率和比例
- 4、比与比例的知识
什么是比?什么是比例?比和比例有什么关联和区别?
一、定义
比:两个数相除又叫做两个数的比。
比例:表示两个比相等的式子叫做比例。
二、联系
比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。
三、区别
1、表示意义不同
比表示两个数相除(有两项,前项和后项),比例表示两个比相等的式子(有四项,两个内项,两个外项)。
2、基本性质不同
比的基本性质是比的前项与后项同时乘或除以相同的数(0除外),比值不变,比例的基本性质是比例的内项之积等于比例的外项之积。比有2个项,叫前项和后项,比例有4个项,分为内项和外项。不包括比值。
扩展资料
比例的分类:
1、正比例
两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。如果用字母x和y表示两种关联的量,用k表示它们的比值,成正比例关系可以用下面式子表示:y/x=k(一定)
2、反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。如果用字母x和y表示两种关联的量,用k表示它们的乘积,成反比例关系可以用下面式子表示:xy=k(一定)
反比例性的概念可以与直接相称性进行对比。考虑两个变量被认为是“相互成比例”的。如果所有其他变量保持不变,如果另一个变量增加,则一个反比例变量的幅度或绝对值减小,而其乘积(比例常数k)总是相同的。
参考资料来源:百度百科-比
参考资料来源:百度百科-比例
比例是什么
比例是将总体中各个部分的数值都变成同一个基数,也就是都以1为基数,这样就可以对不同类别的数值进行比较了。
比例的定义:比例是一个总体中各个部分的数量占总体数量的比,通常反映总体的构成和结构。假定总体中数量N,被分成K个部分,每一部分的数量分别是“N1,N2,...,Nk”,根据定义各个部分的和等于1,即N1/N+N2/N+...+Nk/N=1
比例是将总体中各个部分的数值都变成同一个基数,也就是都以1为基数,这样就可以对不同类别的数值进行比较了。将比例乘以100就是百分率、百分比或百分数,即将对比的基数抽象化为100而计算出来的,用%表示,它表示每100个分母中拥有多少个分子。
比例的性质:比例的性质是指组成比例的四个数,合分比性质、等比性质以及它们的推广。 这四条性质多用于分式的计算和证明,以及三角函数、相似三角形、平行线分线段成比例定理的应用中。其中尤其以等比性质的应用最为广泛。
比率和比例
【二者定义】:
比率,即比值,两数相比所得的值。
比例,表示两个比相等的式子叫做比例,组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
【二者区别】:
除了定义上的区别之外,二者还有以下区别:
比率表示总体中的一部分与总体作比较,一般用百分比的形式表示。
比例表示总体中两个部分之间的比较,一般用几比几的形式表示。
比与比例的知识
比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。
比值:比的前项除以后项的商,叫做比值。
比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
比例:表示两个比相等的式子叫做比例。a:b=c:d或
比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。
反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。
比例尺:图上距离与实际距离的比叫做比例尺。
按比例分配:把几个数按一定比例分成几份,叫按比例分配。
扩展资料
1、比的意义
两个数相除又叫做两个数的比。
“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
参考资料来源:百度百科-比
参考资料来源:百度百科-比例