本文目录一览:
无理数是什么
无理数是指小数点后有无限多个数字,但是它们都不循环,最经典的无理数就是π和e,最早是由毕氏学派的弟子希伯索斯在正方形的对角线长度中发现的,与学派中“万物皆有理”是相违背的,因此也引发了数学史上三大危机之一的无理数危机。
无理数是什么?
无理数就是无限不循环小数,在公元前500年,希伯索斯发现如果一个正方形的边长为1,那么它的对角线将是一个无法穷尽而且没有规律的数字,但是在这之前,古希腊人都认为世界上只有有理数才是真理,但事实上有理数是无法填满一整条直线上的所有点的。
无理数是怎么来的?
之后毕氏学派就将违背“真理”的数字称为“无理”,还将发现者希伯索斯当做“异教徒”,利用活埋来威胁他,最终将其淹死在海中,因为这一发现,直接指出了有理数的极大缺陷,完全的推翻了毕氏学派有理数的幻想。
毕加索也曾将不可通约的数字,称为“无理的数”,直到1872年,德国数学家戴德金才明确的定义了无理数,并将其加入数学理论中,这才结束了历经2000年的第一次数学危机。
什么叫做无理数?
无理数指的是无限不循环的数字,数字主要分为有理数和无理数。
在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率构成的数字。
无理数经常是用分数来表示。
常见的无理数有非完全平方数的平方根、π和e等。无理数的另一特征是无限的连分数表达式。
什么是无理数
无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
无理数指的是什么
无理数是指除有理数以外的实数,当中的“理”字来自于拉丁语的rationalis,意思是“理解”,实际是拉丁文对于logos“说明”的翻译,是指无法用两个整数的比来说明一个无理数。
无理数的定义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
无理数是在实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如π、√2等。
无理数和有理数有哪些区别
1.性质不同
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
2.范围不同
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。
3.结构不同
有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。
无理数的概念是什么
在数学中,无理数是所有不是有理数字的实数,无理数,也称为无限不循环小数,不能写作两整数之比。
无理数的概念
无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
有理数和无理数的区别
(1)性质区别:
有理数是两个整数的比,总能写成整数、有限小数或无限循环小数;无理数不能写成两个整数之比,是无限不循环小数。
(2)结构区别:
有理数是整数和分数的统称;无理数是所有不是有理数的实数。
(3)范围区别:
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行;无理数是指实数范围内不能表示成两个整数之比的数。
无理数集及其他数集的符号
无理数集相当于实数集中有理数集的补集,实数集R,有理数集Q,所以无理数集合符号为CrQ。
所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
所有负整数组成的集合称为负整数集,记作Z-。
全体虚数组成的集合称为虚数集,记作I。
全体实数和虚数组成的复数的集合称为复数集,记作C。