本文目录一览:
- 1、什么叫高阶的无穷小
- 2、高阶无穷小是什么意思?
- 3、高阶无穷小什么意思
- 4、什么是高阶无穷小
什么叫高阶的无穷小
高阶无穷小:设α与β都是x的函数,且limα=0,limβ=0,即α,β都是无穷小。低阶无穷小:符号φ(x)=o(ψ(x))表示函数φ(x)是比函数ψ(x)较高阶的无穷小,或φ(x)是比ψ(x)较低阶的无穷大。
“高阶无穷小”意思是:在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些。若lim(β/α)=0,则称“β是比α较高阶的无穷小”。
高阶无穷小意思是说在的过程中比趋向0的速度快。若lim(β/α)=0,则称“β是比α较高阶的无穷小”。意思是在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些。
高阶无穷小加低阶无穷小等于低阶无穷小。若lim(β/α)=0,则称“β是比α较高阶的无穷小”。意思是在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些。
若lim x→x0,f(x)/g(x)=0,则称f为g的高阶无穷小量,或称g为f的低阶无穷小量。
高阶无穷小和是低阶无穷小量两个概念是相对的,不能说某个量是高阶无穷小量或是低阶无穷小量,应该是某个量是某个量的高阶无穷小量或低阶无穷小量。
高阶无穷小是什么意思?
高阶无穷小:设α与β都是x的函数,且limα=0,limβ=0,即α,β都是无穷小。低阶无穷小:符号φ(x)=o(ψ(x))表示函数φ(x)是比函数ψ(x)较高阶的无穷小,或φ(x)是比ψ(x)较低阶的无穷大。
若lim(β/α)=0,则称“β是比α较高阶的无穷小”。意思是在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些 。
高阶的无穷小含义:如果b比a的极限值等于0,则b是比a高阶的无穷小。无穷小之间的简单运算:如果b是a的高阶无穷小,即b比a的极限值等于0。如果a与b为同阶无穷小,即b比a的极限值等于c,c不等于0。
高阶无穷小加低阶无穷小等于低阶无穷小。若lim(β/α)=0,则称“β是比α较高阶的无穷小”。意思是在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些。
高阶无穷小什么意思
高阶无穷小:设α与β都是x的函数,且limα=0,limβ=0,即α,β都是无穷小。低阶无穷小:符号φ(x)=o(ψ(x))表示函数φ(x)是比函数ψ(x)较高阶的无穷小,或φ(x)是比ψ(x)较低阶的无穷大。
“高阶无穷小”意思是:在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些。若lim(β/α)=0,则称“β是比α较高阶的无穷小”。
高阶的无穷小含义:如果b比a的极限值等于0,则b是比a高阶的无穷小。无穷小之间的简单运算:如果b是a的高阶无穷小,即b比a的极限值等于0。如果a与b为同阶无穷小,即b比a的极限值等于c,c不等于0。
高阶无穷小加低阶无穷小等于低阶无穷小。若lim(β/α)=0,则称“β是比α较高阶的无穷小”。意思是在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些。
什么是高阶无穷小
1、若lim(β/α)=0,则称“β是比α较高阶的无穷小”。意思是在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些 。
2、高阶无穷小:设α与β都是x的函数,且limα=0,limβ=0,即α,β都是无穷小。低阶无穷小:符号φ(x)=o(ψ(x))表示函数φ(x)是比函数ψ(x)较高阶的无穷小,或φ(x)是比ψ(x)较低阶的无穷大。
3、高阶的无穷小含义:如果b比a的极限值等于0,则b是比a高阶的无穷小。无穷小之间的简单运算:如果b是a的高阶无穷小,即b比a的极限值等于0。如果a与b为同阶无穷小,即b比a的极限值等于c,c不等于0。
4、高阶无穷小加低阶无穷小等于低阶无穷小。若lim(β/α)=0,则称“β是比α较高阶的无穷小”。意思是在某一过程(x→x0或x→∞这类过程)中,β→0比α→0快一些。
5、若lim x→x0,f(x)/g(x)=0,则称f为g的高阶无穷小量,或称g为f的低阶无穷小量。
6、如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a)注:o读作奥密克戎,希腊字母 比如b=1/x^2, a=1/x。x-无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶。