本文目录一览:
- 1、微积分有何用处?
- 2、微积分的作用及意义是什么?
- 3、微积分有什么实际用处
- 4、学习微积分有什么用?
- 5、微积分有什么用?
微积分有何用处?
微积分学的发展与应用几乎影响了现代生活的所有领域。它与大部分科学分支关系密切,包括精算、计算机、统计、工业工程、商业管理、医药、护理、人口统计,特别是物理学;经济学亦经常会用到微积分学。几乎所有现代科学技术,如:机械、水利、土木、建筑、航空及航海等工业工程都以微积分学作为基本数学工具。微积分使得数学可以在(非常数)变化率和总改变之间互相转化,让我们可以在已知其中一者时求出另一者。
物理学大量应用微积分;古典力学、热传和电磁学都与微积分有密切联系。已知密度的物体质量、物体的转动惯量、物体在保守力场的总能量都可用微积分来计算。牛顿第二定律便是微积分在力学中的一个应用例子:它的最初陈述使用了“变化率”一词,而“变化率”即是指导数。
陈述大意为:物体动量的变化率等于作用在物体上的力,而且朝同一方向。今天常用的表达方式是{\displaystyle \mathbf {F} =m\mathbf {a} } ,它包括了微分,因为加速度是速度的导数,或是位置矢量的二阶导数。已知物体的加速度,我们就可以得出它的路径。
麦克斯韦尔的电磁学理论和爱因斯坦的广义相对论都应用了微分。化学使用微积分来计算反应速率,放射性衰退。生物学用微积分来计算种群动态,输入繁殖率和死亡率来模拟种群改变。
微积分可以与其他数学分支并用。例如,可与线性代数并用,来求得某区域中一组点的“最佳”线性近似。它也可以用在概率论中,来确定由给定密度函数所给出的连续随机变量之概率。在解析几何对函数图像的研究中,微积分可以用来求得最大值、最小值、斜率、凹度、拐点等。
格林公式将一个封闭曲线上的线积分,与一个边界为{\displaystyle C}且平面区域为{\displaystyle D}的双重积分联系起来。这一点被应用于求积仪这个工具,它用于量度在平面上的不规则图形面积。例如,它可以在设计住宅摆设时,计算不规则的花瓣床、游泳池所占的面积。
在医疗领域,微积分可以计算血管最优支角,将血流最大化。通过药物在体内的衰退规律,微积分可以推导出服药规律。
在经济学中,微积分可以通过计算边际成本和边际收益来确定最大利润。
微积分也被用于寻找方程的近似值;实践中,它是在各种应用里解微分方程、求根的标准做法。典型的方法有牛顿法、定点迭代法、线性近似等。比如:宇宙飞船利用一种欧拉方法的变体来求得零重力环境下的近似航线。
扩展资料
早期的微积分概念来自于埃及、希腊、中国、印度、伊拉克、波斯、日本,但现代微积分来自于欧洲。17世纪时,艾萨克·牛顿与戈特弗里德·莱布尼茨在前人的基础上提出微积分的基本理论。微积分基本概念的产生是建立在求瞬间运动和曲线下面积这两个问题之上的。
微分应用包括对速度、加速度、曲线斜率、最优化等的计算。积分应用包括对面积、体积、弧长、质心、做功、压力的计算。更高级的应用包括幂级数和傅里叶级数等。
微积分也使人们更加精确地理解到空间、时间和运动的本质。多个世纪以来,数学家和哲学家都在争论除以零或无限多个数之和的相关悖论。这些问题在研究运动和面积时常常出现。古希腊哲学家埃利亚的芝诺便给出了好几个著名的悖论例子。微积分提供了工具,特别是极限和无穷级数,以解决该些悖论。
参考资料来源:百度百科-微积分
微积分的作用及意义是什么?
微积分的作用:
微积分是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
意义是:
微积分学的创立,极大地推动了数学的发展,过去很多用初等数学无法解决的问题,运用微积分,这些问题往往迎刃而解,显示出微积分学的非凡威力。
极限理论:
十七世纪以来,微积分的概念和技巧不断扩展并被广泛应用来解决天文学、物理学中的各种实际问题,取得了巨大的成就。但直到十九世纪以前,在微积分的发展过程中,其数学分析的严密性问题一直没有得到解决。
十八世纪中,包括牛顿和莱布尼兹在内的许多大数学家都觉察到这一问题并对这个问题作了努力,但都没有成功地解决这个问题。
整个十八世纪,微积分的基础是混乱和不清楚的,许多英国数学家也许是由于仍然为古希腊的几何所束缚,因而怀疑微积分的全部工作。
这个问题一直到十九世纪下半叶才由法国数学家柯西得到了完整的解决,柯西极限存在准则使得微积分注入了严密性,这就是极限理论的创立。极限理论的创立使得微积分从此建立在一个严密的分析基础之上,它也为20世纪数学的发展奠定了基础。
微积分有什么实际用处
微积分能够解决许多实际问题,比如一个木棒最多能通过宽度为多少的管道的直角转弯。
一、微积分的概念
微积分是研究函数的微分、积分以及有关概念和应用的数学分支,它的发明是数学发展史上的一次伟大飞跃。
二、微积分的提出
微积分由牛顿和莱布尼茨创立于17世纪,但它的思想源远流长,中国魏晋时期数学家刘徽发明的“割圆术”、南北朝时期数学家祖暅提出的“祖暅原理”,古希腊数学家欧多克斯发展的“穷竭法”、阿基米德创立的“平衡法”,等等,都蕴含着微积分的思想,可以说微积分贯穿数学史乃至人类文明史发展的整个过程。
三、微积分和实践
第一,实践是数学认识的来源,数学来源于实践,人们正是在实践中认识和发展数学。微积分基本定理,是牛顿、莱布尼茨在解决求面积、求切线的问题中创立的。
第二,实践是数学发展的动力。实践的需要推动数学的产生和发展。随着工业革命的兴起,许多学科如雨后春笋般兴起。
第三,实践是数学认识的目的。人们认识数学并不是“猎奇”,也不是“雅兴”,而是为实践服务。微积分的产生和发展是为了解决生活和生产上的问题。
学习微积分有什么用?
那就是我胆子有点小,晚上怕黑,自己一个人不敢去厕所,还得叫上同学一起去。
微分方程,是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
微分方程是伴随着微积分学一起发展起来的。微积分学的书中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、物理学、工程学、天文学等领域都有应用。
初等等代数学向两个方向进一步发展:未知数更多的一次方程组;未知数次数更高的高次方程。在这两个方向上的发展,使得代数学发展到高等代数的阶段。高等代数作为代数学发展到高级阶段的总称,包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数和多项式代数。
以幂级数为工具,用严密的纯解析推理展开了函数论。并将解析函数定义为可以展开为幂级数的函数,围绕着奇点对函数性质进行研究。
泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科,是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。
微积分有什么用?
微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。
极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
微积分它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念。
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。