本文目录一览:
关于生物学上表皮的定义 出处
释义: ①人和动物皮肤的外层。由胚胎时期外胚层形成。具有抗摩擦和抗损伤的作用。 ②植物初生组织表面的细胞层。一般由单层、无色而扁平的活细胞构成。它是植物体和外界环境接触的最外层细胞。
基本解释 :[epidermis;cuticle] 动物体和植物体的最表面被覆层
详细解释 :1. 动、植物体表面的一层组织。
成人表皮主要由三种细胞构成,除角质形成细胞外,还包括黑素细胞(melanocyte)和郎格汉斯细胞(Langerhans’cell)。此外,在某些部位还存在默克尔细胞(Merkcl Cell).
角质形成细胞(keratinocyte)
是一种不断分化的复层鳞状上皮细胞,其分化的最终阶是形成角蛋白(keratin)。目前已鉴定出多种角蛋白基因,主要包括酸性和碱性两大类角蛋白基因。根据角质形成细胞的发展阶段和特点,从内向外可将其分为五层。基底细胞层(basal cell layer)又称生发层,为一层柱状上皮,位于表皮最下层,正常情况下大约有30%的基底细胞进入分裂象。主要产生新的表皮细胞。棘细胞层(pricklC ccu layer)一般由4—8层多角形带棘突的细胞组成。下部的棘细胞也有分裂功能,可参与创伤愈合。上部的棘细胞渐趋扁平,与颗粒层细胞相连。棘细胞胞浆内的张力微丝较基底细胞的为多,是向角化发展的过程。颗粒层(stratumgranulosum)一般为2—4层梭形细胞,是进一步向角质层分化的细胞。角质层增厚时颗粒层也相应地增厚。这些细胞中有较多大小不等、形状不规则、嗜碱性的透明角质颗粒(keratohyaline granules)。细胞核和细胞器在颗粒层中溶解。透明层(stratum lucid—um)仅旦于手掌和足跖表皮,是角质层的前期。为2—3层扁平、境界不清、无核、紧密相连的细胞。角质层(stratum corneum)是由4—8层已经死亡的扁平无核细胞所组成的保护层。其细胞器已经溶解,水分丢失,细胞膜变厚,细胞中充满了由透明角质颗粒分解而产生的含硫的基质与张力微丝招融合而成的软纤维性蛋白,即角蛋白。
表皮细胞通过时间和表皮更替时间
角质形成细胞的分化成熟表现为从基底层到向角质层的逐渐移行。在单一移行过程中,角质形成;阻胞的形状和功能也逐渐发生着变化,从单层柱状上皮的基底层到扁平的细胞核消失的角质层。新生的基底细胞进入棘细胞层,然后上移到颗粒层的最上层,约需14天;再通过角质层而脱落下来又霈14天,共28天,称表皮细胞通过时间(transit time),如果加上基底细胞的分裂周期13-19天,共约41一47天,称为表皮更替时间(turn ovel.timc)。了解角质形成细胞的细胞动力学特性对理解某些皮肤疾病的发病机制十分重要。在银屑病患者,基底细胞分裂周期缩短为37.5小时,表皮更替时间也缩短到8~10天细胞不被部分这个并发出成熟,因此形成角化不全,临床表现为大量鳞屑。
桥粒(dcsmosomes)
角质形成细胞之间借助桥粒互相连接,光镜下的桥粒呈棘刺状,电镜下可见中央层(cerltralstratum)和附着斑(attachment plaquc),其上有张力微丝(tonofilament附着。桥粒主要由桥粒(desmosomallcorc)和桥粒斑(desmosomalplaqtlc)两类蛋白组成。新生的角质形成细胞自基底层向上移行,故有人认为桥粒可以分开并重新形成。张力微丝是角蛋白的前身,它对保持细胞的形态起重要作用,也是形成角蛋白的重要成分。桥粒的作用是维持细胞间的连接,一旦桥粒受到破坏,则会引起角质形成细胞的松解而出现表皮内疱,如天疱疹。
表皮下基底膜带
表皮与真皮之间的连接由向真皮伸入的表皮脚(epidermal ridges or pegs)和向表皮伸人的真皮乳头(dermal papilkae)浪状互相镶嵌而成。用PAS染色,在表皮与真空交界处可见含有糖蛋白的红染带,称为表皮下基底膜带(subeoithelial basement membranezone)。电镜下该带分为四层:①基底细胞膜,包括半桥粒(hemidesmosome、附着斑和基底层下致密板);②透明板(lamina lucida)为厚约30—40mm的电子透明带;含大疱性类天疱疮抗原;③基底板(basal lamina),又称致密板(1arrdm densa),为35—45nm厚的电子致密带,系光镜下的基底膜,主要由Ⅳ型胶原组成;④致密板下带,主要由胶原纤(collagenfibril) 和锚状纤维(Anchoring fibril)组成,后者的主要成分是Ⅶ型胶原。了解表皮下基底膜带的结构将有助于理解气天性和后天性大疱性皮肤病的发病机制。基底细胞底部的细胞膜上只有半个桥粒状结构,称之为半桥粒(henli-desmosome)。许多纤细的纤维将半桥粒与其下的真皮胶原纤维结合起来,故正常表皮与真皮间的连接是比较角化过程 角蛋白是角质形成细胞分化后的最终产物,其功能主要是抵抗机械性、理化因素和微生物的侵袭。对机体起到防护作用。角蛋白是一个大家族,其中有30余种,按照其基因可以分为两大类,碱性的工型和酸性的Ⅱ型角蛋白。角蛋白一般成对存在,分别包含工型和Ⅱ型各一种角蛋白。在基底细胞和棘细胞中主要是角蛋白K5和K14,随着细胞向上逐渐分化,到颗粒层和角质层则被角蛋白Kl和Kl。替代。在银屑病等表皮增生过度性疾病中则可见到角蛋白K6和K16。单纯性大疱表皮松解症和大疱性红皮病性鱼鳞病均与角蛋白基因突变有关。
黑素细胞
位于基底层中,约占基底层细胞的1%。其主要作用是产生黑素(mclanin)。黑素细胞借助其较多的树枝突起,向邻近的一些基底细胞和棘细胞输送黑素颗粒。每个黑素细胞借助树枝状突起可与大约36个角质形成细胞接触,形成表皮黑素单位。用银染色及DOPA反应可示其胞浆及树枝状突起中有黑素小体(melanosome)。其中富含酪氨酸酶,黑素即在此小体中合成。角质形成细胞吞噬经黑素细胞树突输送来的黑素颗粒,后者在基底层细胞核上方较多,起到反射光线的作用。肤色的差异主要与黑素细胞产生黑素的数量有关而与黑素细胞的数目无关。黑素细胞在暴露部位如面部及乳晕、腋窝、生殖器、会阴部等处较多。
郎格汉斯细胞(Langerhans’cell)
为一种树枝状细胞,主要分布于棘细胞间,占表皮细胞的3%一5%。氯化金染色可见树枝状突起,s00、CDl及Atp酶染色阳性,DOPA染色阴性,无桥粒。电子显微镜下可见其胞浆中有呈网球拍状的颗粒(Birbeck granule)。其麦面具有C3b和IgG、IgE的Fc受体,携带HLA-DR、-DP和-DQ抗原。现已证实它起源于骨髓而进入表皮,属于单核一吞噬细胞系统,它与移植排斥、原发接触致敏和免疫监视等许多免疫反应密切相关,是一种重要的。有吞噬作用并能加工及递呈抗原的免疫活性细胞。
默克尔细胞(Merkel’s cell)
接近基底层,不分枝,与角质形成细胞之间有桥粒相连。脑浆中有一些椭圆形颗粒,颗粒中含有神经介质。这种细胞多见于掌跖、指趾、口唇及生殖器、毛囊等部位,推测其功能与皮肤的精细触觉有关。
细胞连接的锚定连接
通过细胞的骨架系统将细胞或细胞与基质相连成一个坚挺、有序的细胞群体,使细胞间、细胞与基质间具有抵抗机械张力的牢固粘合。锚定连接在组织内分布很广泛,在上皮组织,心肌和子宫颈等组织中含量尤为丰富。
特点:通过肌动蛋白丝或中等纤维相连。 1、参与锚定连接的骨架系统可分两种不同形式:
⑴与中间纤维相连的锚定连接主要包括桥粒和半桥粒;
⑵与肌动蛋白纤维相连的锚定连接主要包括粘合带与粘合斑。
2、构成锚定连接的蛋白可分成两类:
⑴细胞内附着蛋白,将特定的细胞骨架成分(中间纤维或微丝)同连接复合体结合在一起。
⑵跨膜连接的糖蛋白,其细胞内的部分与附着蛋白相连,细胞外的部分与相邻细胞的跨膜连接糖蛋白相互作用或与胞外基质相互作用。 1、中间纤维相连的锚定连接
⑴桥粒:又称点状桥粒,位于粘合带下方。是细胞间形成的钮扣式的连接结构,跨膜蛋白(钙粘素)通过附着蛋白(致密斑)与中间纤维相联系,提供细胞内中间纤维的锚定位点。中间纤维横贯细胞,形成网状结构,同时还通过桥粒与相邻细胞连成一体,形成整体网络,起支持和抵抗外界压力与张力的作用。桥粒(desmosome)存在于承受强拉力的组织中,如皮肤、口腔、食管等处的复层鳞状上皮细胞之间和心肌中。相邻细胞间形成纽扣状结构,细胞膜之间的间隙约30nm,质膜下方有细胞质附着蛋白质,如片珠蛋白(plakoglobin)、桥粒斑蛋白(desmoplakin)等,形成一厚约15~20nm的致密斑。斑上有中间纤维相连,中间纤维的性质因细胞类型而异,如:在上皮细胞中为角蛋白丝(keratin filaments),在心肌细胞中则为结蛋白丝(desmin filaments)。桥粒中间为钙粘素(desmoglein及desmocollin)。因此相邻细胞中的中间纤维通过细胞质斑和钙粘素构成了穿胞细胞骨架网络。
主要构成单位是跨膜蛋白、附着蛋白、中间纤维。胰蛋白酶、胶原酶及透明质酸酶皆可破坏跨膜蛋白的胞外结构,使桥粒分离;Ca2+是必需的,故螯合剂也可使之分离。
⑵半桥粒:半桥粒相当于半个桥粒,但其功能和化学组成与桥粒不同。它通过细胞质膜上的膜蛋白整合素将上皮细胞锚定在基底膜上, 在半桥粒中,中间纤维不是穿过而是终止于半桥粒的致密斑内。存在于上皮组织基底层细胞靠近基底膜处,防止机械力造成细胞与基膜脱离。半桥粒(hemidesmosome)在结构上类似桥粒,位于上皮细胞基面与基膜之间,它桥粒的不同之处在于:①只在质膜内侧形成桥粒斑结构,其另一侧为基膜;②穿膜连接蛋白为整合素(integrin)而不是钙粘素,整合素是细胞外基质的受体蛋白;③细胞内的附着蛋白为角蛋白(keratin)。
2、与肌动蛋白纤维相连的锚定连接
粘合带(adhesion belt)呈带状环绕细胞,一般位于上皮细胞顶侧面的紧密连接下方。在粘合带处相邻细胞的间隙约15~20nm。
间隙中的粘合分子为E-钙粘素。在质膜的内侧有几种附着蛋白与钙粘素结合在一起,这些附着蛋白包括:α-,β-,γ-连锁蛋白(catenin)、粘着斑蛋白(vinculin)、α-辅肌动蛋白(α-actinin)和片珠蛋白(plakoslobin)。
粘合带处的质膜下方有与质膜平行排列的肌动蛋白束,钙粘蛋白通过附着蛋白与肌动蛋白束相结合。于是,相邻细胞中的肌动蛋白丝束通过钙粘蛋白和附着蛋白编织成了一个广泛的网络,把相邻细胞联合在一起。
粘合斑(adhesion plaque)位于细胞与细胞外基质间,通过整合素(integrin)把细胞中的肌动蛋白束和基质连接起来。连接处的质膜呈盘状,称为粘合斑。
⑴粘合带:又称带状桥粒,位于紧密连接下方,相邻细胞间形成一个连续的带状连接结构,跨膜蛋白通过微丝束间接将组织连接在一起,提高组织的机械张力。
E钙粘素(依赖于Ca2+的粘附分子)为跨膜蛋白的主要成分。存在于上皮细胞近顶部、紧密连接的下端,呈一环形的带状。相邻细胞的间隙约15~20nm。
⑵粘合斑:细胞通过肌动蛋白纤维和整联蛋白与细胞外基质之间的连接方式,微丝束通过附着蛋白锚定在连接部位的跨膜蛋白上。存在于某些细胞的基底,呈局限性斑状。其形成对细胞迁移是不可缺少的。体外培养的细胞常通过粘着斑粘附于培养皿上。
细胞连接详细概念 “细胞连接”详细概念
英文名称:cell junction 在多细胞生物体内,细胞与细胞之间通过细胞膜相互联系,形成一个密切相关,彼此协调一致的统一体,称为细胞连接.细胞连接是多细胞有机体中相邻细胞之间通过细胞膜相互联系、协同作用的重要组织方式,在结构上常包括质膜下、质膜及质膜外细胞间几个部分,对于维持组织的完整性非常重要,有的还具有细胞通讯作用.细胞连接的描述性概念是指细胞表面的特化结构,或特化区域,两个细胞通过这种结构连接起来.细胞的特化区涉及细胞外基质蛋白、跨膜蛋白、胞质溶胶蛋白、细胞骨架蛋白等.从功能上看,细胞连接将同类细胞连接成组织,并同相邻组织的细胞保持相对稳定.细胞粘着是细胞连接的起始,细胞连接是细胞粘着的发展.从时间上看,粘着在先,连接在后.从结构上看,细胞粘着涉及的分子较少、范围局部、结构简单;而细胞连接涉及的蛋白分子较多、范围广、结构复杂,结合的紧密程度高.动物细胞有三种类型的连接∶紧密连接(tight junction)、粘着连接(adhesion junction)、间隙连接(gap junction),每一种连接都具有独特的功能∶封闭(紧密连接)、粘着(斑形成连接)和通讯(间隙连接).这三种类型的细胞连接中,粘着连接最为复杂,并且易同细胞粘着相混淆.根据粘着连接在连接中所涉及的细胞外基质和细胞骨架的关系又分为四种类型:桥粒、半桥粒、粘着带和粘着斑.
编辑本段类型
动物细胞间的连接方式有紧密连接、桥粒、粘合带以及间隙连接等.植物细胞间则通过胞间连丝连接.动物细胞的连接按功能可分为三大类.
封闭连接或闭锁连接
紧密连接
锚定连接
1、与中间纤维相关的锚定连接:⑴桥粒 ⑵半桥粒 2、与肌动蛋白纤维相关的锚定连接:⑴粘合带 ⑵粘合斑
通讯连接
1、间隙连接 2、神经细胞间的化学突触 3、植物细胞中的胞间连丝