本文目录一览:
- 1、什么是值域?什么是定义域?
- 2、什么是值域
- 3、值域是什么?
什么是值域?什么是定义域?
值域是在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
定义域(domain of definition)指自变量x的取值范围,是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。
扩展资料:
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
什么是值域
值域,一般指的是函数的值域。
在表达式y=f(x)中,y的所有可能取值构成的集合,称之为这个函数的值域。
值域取决于:x(自变量)和f(对应法则)。
值域是什么?
值域:函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。在实数分析中,函数的值域是实数,而在复数域中,值域是复数。
扩展资料
函数经典定义中,因变量的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。即{y∣y=f(x),x∈D}
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a0时,值域为 [4ac-b^2/4a,+∞) ;
当a0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R