本文目录一览:
六年级解方程怎么解
六年级解方程的解法如下:
解方程步骤:
⑴有分母先去分母。
⑵有括号就去括号。
⑶需要移项就进行移项。
⑷合并同类项。
⑸系数化为1求得未知数的值。
⑹开头要写“解”。
移项:未知数移到左侧,常数移到右侧(有括号的拆开后再移,“=”和原方程在一条垂直线上);2.除系数:两端除以未知数的系数(同样,“=”和原方程在一条垂直线上)。
解方程:
使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
拓展:
利用等式的性质解方程:1、方程的左右两边同时加上或减去同一个数,方程的解不变。2、方程的左右两边同时乘同一个不为0的数,方程的解不变。3、方程的左右两边同时除以同一个不为0的数,方程的解不变。
两步、三步运算的方程的解法。
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
根据加减乘除法各部分之间的关系解方程。
1、根据加法中各部分之间的关系解方程。
2、根据减法中各部分之间的关系解方程。
在减法中,被减速=差+减数。
3、根据乘法中各部分之间的关系解方程。
在乘法中,一个因数=积/另一个因数。
例如:列出方程,并求出方程的解。
4、根据除法中各部分之间的关系解方程。
六年级解方程带答案(带过程)是什么?
六年级解方程带答案(带过程)如下:
解方程是指在一个等式中即有分数,也有未知数X。
分数解方程步骤:
1、看——看等号两边是否可以直接计算。
2、变——如果两边不可以直接计算,就运用和差积商的公式对方程进行变形。
3、通——对可以相加减的项进行通分。
4、除——两边同时除以一个不为零的数。
注意:(1)都含有未知数的项才能相加减,或者都不含有未知数的项才能相加减。
(2)除以一个数等于乘以这个数的倒数。
关于方程的分类:
1、一元一次方程
只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。
2、二元一次方程组
二元一次方程组定义:由两个二元一次方程组成的方程组,叫二元一次方程组。
3、一元二次方程
含有一个未知数,并且未知数的最高次数是2的整式方程,这样的方程叫做一元二次方程。
解方程怎么解六年级
解方程六年级解法如下:
一、利用等式的性质解方程。因为方程是等式,所以等式具有的性质方程都察绝具有。
1、方程的左右两边同时加上或减去同一个数,方程的解不变。
2、方程的左右两边同时乘同一个不为0的数,方程的解不变。
3、方程的左右两边同时除以同一个不为0的数,方程的解不变 。
二、两步、三步运算的方程的解法:两步、三步运算的方程,可根据等式的则咐性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
三、根据加减乘除法各部分之间的关系解方程。
1、根据加法中各部分之间的关系解方程。
2、根据减法中各部分之间的关系解方程。在减法中,被减速=差+减数。
3、根据乘法中各部分察绝之间孙没纯的关系解方程在乘法中,一个因数=积/另一个因数。
4、根据除法中各部分之间的关系解方程。解完方程后,需要通过检验,验证求出的解是否成立。这就要则咐先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。
六年级解方程有哪些?
如下:
1、4x+8=4
解:4x=4-8
4x=-4
x=-4÷4
x=-1。
2、12x+8x-12=28
解:20x=28+12
20x=40
x=40÷20
x=2。
3、4x+2.1=8.5
解:4x=8.5-2.1
4x=6.4
x=6.4÷4
x=1.6。
相关概念:
1.含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
2.使等式成立的未知数的值,称为方程的解,或方程的根。
3.解方程就是求出方程中所有未知数的值的过程。
4.方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
5.验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
6.注意事项:写"解"字,等号对齐,检验。
7.方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)。