本文目录一览:
- 1、函数的有界性是什么意思?
- 2、什么是有界函数
- 3、有界函数都有哪些啊???
- 4、函数有界的定义
- 5、有界函数是指什么?
- 6、有界函数,无界函数是什么意思?
函数的有界性是什么意思?
1、有界性 就是y轴上的界限,比如y=sinx,-1=y=1,这就是方程的有界性,而且有界性是人为的,可以限定x的取值范围,比如y=tanx,在x∈[-1,1]就是有界的。
2、称函数有下界;有上界或有下界的函数叫有界函数。
3、函数和数列均有:有界性。有界的意思是上下界都有,不是只要存在上界。有界数列,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。
4、函数的有界性 定义:若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D 。 则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
5、问题一:函数的有界性定义什么意思 这个定义还不怎么难理解。函数有界就是指在函数的定义域内,这个函数的所有函数值的绝对值不会比某个固定的正数M大。
6、所谓函数f(x)具有有界性就是指:设f(x)在D 上有定义,若存在某一固定的正数M ,对于每一x ∈D ,都成立│f(x)│≤M ,则说f(x)在D 上有界。
什么是有界函数
1、有界函数是一个数学术语,是指具有有界性的函数。举例如下:设函数f(x)的定义域为D,f(x)集合D上有定义。如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在D上有上界。
2、值域是有限区间的函数,是有界函数。值域是无限区间的函数是无界函数。例如,正弦函数y=sinx,对任意x∈(-∞,+∞),|sinx|≤1恒成立,所以y=sinx是R上的有界函数。
3、有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
4、函数有界的定义有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。设函数f(x)的定义域为D,f(x)集合D上有定义。
5、常见的有界函数有:y=sin(x) 其中,该函数的上界是1,下界是-1。y=cos(x)其中,该函数的上界是1,下界是-1。y=arctan(x)其中,该函数的上界是pi/2,下界是-pi/2。
6、如果存在常数 M,使对任意的 x∈D,有 f(x)≤M,称函数有上界;如果存在常数 m ,使对任意的 x∈D,有 f(x)≥m,称函数有下界;有上界或有下界的函数叫有界函数。
有界函数都有哪些啊???
七个典型的有界函数有:y=sin(x)其中,该函数的上界是1,下界是-1。y=cos(x)其中,该函数的上界是1,下界是-1。y=arctan(x)其中,该函数的上界是pi/2,下界是-pi/2。
如果不指定定义域范围,在函数定义域内,有界函数主要有:正弦函数,余弦函数,符号函数等。
有界函数有正弦函数sin x 和余弦函数cos x。
函数有界的定义
有界:sinx和cosx在R上是有界的。一般来说,连续函数在闭区间具有有界性。例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。
函数有界的定义有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。设函数f(x)的定义域为D,f(x)集合D上有定义。
有界的定义:若存在两个常数m和M,使函数y=f(x),x∈D,满足m≤f(x)≤M,x∈D。则称函数y=f(x)在D有界。
有界函数并不一定是连续的。根据定义,在D上有上(下)界,则意味着值域(D)是一个有上(下)界的数集。根据确界原理,在定义域上有上(下)确界。
有界函数是指什么?
1、有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
2、常见的有界函数有:y=sin(x) 其中,该函数的上界是1,下界是-1。y=cos(x)其中,该函数的上界是1,下界是-1。y=arctan(x)其中,该函数的上界是pi/2,下界是-pi/2。
3、函数有界的定义有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。设函数f(x)的定义域为D,f(x)集合D上有定义。
4、值域是有限区间的函数,是有界函数。值域是无限区间的函数是无界函数。例如,正弦函数y=sinx,对任意x∈(-∞,+∞),|sinx|≤1恒成立,所以y=sinx是R上的有界函数。
5、如果存在常数 M,使对任意的 x∈D,有 f(x)≤M,称函数有上界;如果存在常数 m ,使对任意的 x∈D,有 f(x)≥m,称函数有下界;有上界或有下界的函数叫有界函数。
有界函数,无界函数是什么意思?
无界函数,即不是有界函数的函数。也就是说,函数y=f(x)在定义域上只有上界(或只有下界);或者既没有上界又没有下界,称f(x)在定义域上无界,在定义域无界的函数称为无界函数 。
高数中的有界无界指的是函数的定义域和值域可取的范围。
无界量就是函数值可以要多大,就能达到多大,也就是函数的值域能达到无穷大。
有界函数是指有最值,无界函数则无最值。例如。y=x,是无界函数。而正弦函数则是有界函数。
没有最大或最小值为无界函数 问题三:函数有界是什么意思?为什么说有界不一定有极限 有界就是说函数值在一定范围内变动,即n 问题四:什么是有界函数,常见的有界函数有哪些 简单地说,函数的值域有界,就是有界函数。