奇闻铁事

登录

梅涅劳斯(梅涅劳斯逆定理)

wangsihai

本文目录一览:

如题 初三数学中的梅涅劳斯定理指什么?如何简单运用

梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的.它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1.证明:过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD ,BD/DC=BD/DC ,CE/EA=DC/AG.三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1 它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线.利用这个逆定理,可以判断三点共线.另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写 为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连.我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落.我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去.我们不必考虑怎样走路程最短,只要求必须“游历”了所有的景点.只“路过”而不停留观赏的景点,不能算是“游历”.例如直升机降落在A点,我们从A点出发,“游历”了其它五个字母所代表的景点后,最终还要回到出发点A.另外还有一个要求,就是同一直线上的三个景点,必须连续游过之后,才能变更到其它直线上的景点.从A点出发的旅游方案共有四种,下面逐一说明:方案① ——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A.按照这个方案,可以写出关系式:(AF:FB)*(BD:DC)*(CE:EA)=1.现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧.从A点出发的旅游方案还有:方案② ——可以简记为:A→B→F→D→E→C→A,由此可写出以下公式:(AB:BF)*(FD:DE)*(EC:CA)=1.从A出发还可以向“C”方向走,于是有:方案③ —— A→C→E→D→F→B→A,由此可写出公式:(AC:CE)*(ED:DF)*(FB:BA)=1.从A出发还有最后一个方案:方案④ —— A→E→C→D→B→F→A,由此写出公式:(AE:EC)*(CD:DB)*(BF:FA)=1.我们的直升机还可以选择在B、C、D、E、F任一点降落,因此就有了图中的另外一些公式.值得注意的是,有些公式中包含了四项因式,而不是“梅涅劳斯定理”中的三项.当直升机降落在B点时,就会有四项因式.而在C点和F点,既会有三项的公式,也会有四项的公式.公式为四项时,有的景点会游览了两次.不知道梅涅劳斯当年是否也是这样想的,只是列出了一两个典型的公式给我们看看.现在是否可以说,我们对梅涅劳斯定理有了更深刻的了解呢.那些复杂的相除相乘的关系式,不会再写错或是记不住吧.

17.梅涅劳斯定理

证明:分别作AG,BH,CI垂直于EF于点G,H,I

设AG=h1,BH=h2,CI=h3,由三角形相似,有

AF/FB = -h1/h2

BD/DC = h2/h3

CE/EA = h3/h1

三个等式相乘,得结论。

说明:

(1)如果直线交三边都在线段外,那么,按照这样的次序书写,三个比值都为负值,结果仍然为-1.

(2)如果交一边在线段上,那么,按照帕士公设,必然还交另一边在线段上,同时交第三边在线段外,按照这样的顺序书写,比值两正一负,结果仍为-1.

(3)如果出现平行,假设交点在无穷远处,依然成立,巧好是平行线分线段成比例。

(4)适当的改变书写顺序,可以把结果写为正一。

(5)如果只考虑长度,不顾及方向,结果也可写为正一。

(6)结果写成负数的含义是:遵照Pasch公理,区分内外分点。

以上证明方法可用。但初中平面几何更常用的是,利用平行线证明。而且,如果教科书上没有梅涅劳斯定理,那么在答题时需要一个简短的证明。通常就依靠同样的辅助线,隐含的使用梅涅劳斯定理。

如,过A作AG//BC,设AG交EF于G。

则:

两式相乘,得

整理得结论。

(辅助线是神一般的存在,当她显像的时候,一切都明了。)

梅涅劳斯定理和塞瓦定理是什么?

梅涅劳斯(Menelaus)定理(简称梅氏定理)最早出现在由古希腊数学家梅涅劳斯的著作《球面学》(Sphaerica)中。一条截线在三角形各边上确定出的六条线段,三条不连续线段的乘积等于剩下三条线段的乘积。这一定理同样可以轻而易举地用初等几何或通过应用简单的三角比关系来证明.梅涅劳斯把这一定理扩展到了球面三角形。

塞瓦定理是指在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则 (BD/DC)×(CE/EA)×(AF/FB)=1。 塞瓦(Giovanni Ceva,1648~1734)意大利水利工程师,数学家。塞瓦定理载于塞瓦于1678年发表的《直线论》一书,也有书中说塞瓦定理是塞瓦重大发现。

梅涅劳斯定理和塞瓦定理的相关性:

梅涅劳斯定理的对偶定理是塞瓦定理。它的逆定理也成立:若有三点F、D、E分别在三角形的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。

使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。

什么是梅涅劳斯定理?又怎么证明?

梅涅劳斯定理

梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的.它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1.

证明:

过点A作AG‖BC交DF的延长线于G

AF/FB=AG/BD ,BD/DC=BD/DC ,CE/EA=DC/AG

三式相乘得:

AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1

它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线.利用这个逆定理,可以判断三点共线.

梅涅劳斯定理和塞瓦定理

梅涅劳斯定理和塞瓦定理分别为:

梅内劳斯(Menelaus,公元98年左右),是希腊数学家兼天文学家.梅涅劳斯定理是平面几何中的一个重要定理. 连结三角形一个顶点和对边上一点的线段叫做这个三角形的一条塞瓦线.塞瓦(G·Gevo1647-1734)是意大利数学家兼水利工程师.他在1678年发表了一个著名的定理,后世以他的名字来命名,叫做塞瓦定理。

连结三角形一个顶点和对边上一点的线段叫做这个三角形的一条塞瓦线.塞瓦(G·Gevo1647-1734)是意大利数学家兼水利工程师.他在1678年发表了一个著名的定理,后世以他的名字来命名,叫做塞瓦定理。

相关阅读

  • 关于爬山的小作文(关于爬山的小学作文)
  • 下女2010的简单介绍
  • 关于控烟的标语
  • 三十里营房(三十里营房天气预报15天查询)
  • 写医牙的作文(写补牙的作文)
  • 马克吐温英语作文
  • 我家的春节作文六百字(我家的春节六百字作文)
  • 中层正职竞聘演讲稿(彭超代笔)(中层正职竞聘演讲稿)
  • 三坊七巷
  • 标签: #